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DISTRIBUTED PARAMETER TYPE of CONTROL for a BILINEAR SYSTEM
BY C.N. Shen and T.C. Liu

Rensselaer Polytechnic Institute, Troy, New York, U.S.A.

Abstract

A bilinear system is one that is linear in the state vector
X(z,t) and also in the control vector p(z,t). The following dif-
ferential equations for a bilinear system has the cross product
term w(z,t)X1(z,t) under a spatial operator.

82

Z

(1-v

2) [u(z,t)X:1(2,t)]= a11Xs + aza=Xe (1)

-a—-Xg(Z,t) = aglxl + ag2Xs2 (2)

ot
with boundary conditions,

Xl(o’t) =Xl(l:t) = XZ(O:t) = X2(1:t) =0 (3)

By the separation of variables the reference control is assumed in-
dependent of z for the reference sclutions. The problem requires
that the state variables start at-a low level and reach a high level
in a minimum time. It is well known from the optimum theory that
for a bounded control the optimum process requires the control oper-
ating at 1ts extreme values. However, one of the output of this
system is found to be discontinuous due to the jump of the control.
A second optimization is necessary since discontinuous output is in-

compatable with a real physical system, and disturbances are to be



compengated for the system. The perturbed equations with the ex-
ponential weighting function can be derived.

The second optimization minimizes a double integral with
square erros as integrand from the present time t to a final time
Tz and over all the region interested. By application of calculus
of variations the Euler-Lagrange equations and proper boundary
conditions are obtained. These Euler-lLagrange equations with the
original perturbed equations can be solved by using Finite Fourier
Sine Transform. The optimum control laws, both spatial and time
varying, can be obtained in closed form. If high harmonic disturb-
ances are introduced in the system, they will be subdued by this
control. Thus the output will follow closely the reference solu-
tion for arbitrary deviation at any time including that of the

initial conditions. '



DISTRIBUTED PARAMETER TYPE OF CONTROL
FOR A BILINEAR SYSTEM
by
C.N. Shen and T.C. Liu

Rensselaer Polytechnic Institute, Troy, New York U. S. A.

Introduction

Bilinear System occurs in controlling physical processes
gsuch as a nuclear reactor. Several papersl’2 discussed the
optimum control for these processes in lumped parameter models.
In this paper the optimum control laws are determined analyti-

cally for a bilinear system in distributed parameter model.
Process Dynamics

A bilinear system is one that is linear in the state vector
X(z,t) and also in the control vector w(z,t). However, there
are cross product terms of the state and control variables such
as nw(z,t) X(z,t). This system is overall linear if the control
vector is an explicit function of independent variables. The
following partial differential equations has the cross product

term w(z,t)X,(z,t) under a spatial operator.
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. .

(1 -0 gzz) [h(z,t)X(2z,t)]= a11Xy + 21:Xe (1)
d

3E—X2(Z:t) = a1 X1 *+ az:2Xs (2)

with the boundary conditions

X1(0,t) = X (1,t) = X(0,t) = X2(1,t) = 0 (3)
where b and a's are constants. These equations with the boundary
conditions can be used as a model for a nuclear reactor where X3
represents the neutron flux, X5 the precussor and @ the absorption
cross-section. The problem 1s to start the reactor at very low
power (neutron flux) to a very high power (perhaps 6 decades) in
minimum time (say 60 seconds) subject to disturbance and arbitrary

starting conditions.
The First Optimization Problem--Reference Variables

Since the distribution in space for both state varilables X3
and X, must satisfy the boundary conditions (3), the fundamental
frequency of the spatial mode of variables X; and Xo can be

assumed as sinusoidal in z.
Xn(z,t) = Yn(t)sinwz n=1,2 (4)

The control variable u(z,t) in this case is found later to

be a function of time only. Thus,

w(z,t) = ug(t) (5)
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Substituting the above equations into Equations (1) and (2),

one obtains:

a1z
Yo (t) = Y2 (t) (6)
(1+bW&)HR(t) - any

and

d

e [ nYa(t)] = v (t) (7)
where

v(t) = dz1 &2 + azz (8)

o i (6] - an
If the control variable uR(t) is bounded for some reason,

uming_uR(t)é M .o the value of v(t) will be also bounded,

O.év(t)s;v. Thus, the optimization problem for the state wvariable
Xy to start at a low level and reach a high level in a minimum
time can be solved from Eguation (7). It is well known from the
optimum theory that for a bounded control the optimum process re-
quires the control operating at its extreme value, 1.e. at y or

Zero (equivalent to umi or umax)' This is a bang-bang type of

n

control system. Therefore, Equation (4) can be explicitly written

for the interval O0&ti{Ty,

a vt

XnR(z,t) = Yno e sin 7wz n=1,2 (9)

and for the interval T1$ t£ To

b vTa

XnR(z,t) =Y e sin 7z n= 1,2 (10)



Page U4

where Yno are constants; superscripts a and b refer to the time
interval (0, Tp) and (Ty, To), respectively.

Both Equations (9) and (10) satisfy Equations (1) and (2)
but have the ratios of on to Ygo and YEO to YEO different from
each other as given by Equation (6). These different ratios in-
dicate the fact that if a continuity of XgR is required, 1.e.
Ygo = Ygo at t=ly, then XlR will suffer a jump at t =T;, 1.e.

Y%o # YEO when control changes from ¢y to zero at ¢t = T,.
Perturbation Eguations of the Bilinear System

Due to the present of disturbances and errors the state and
control variables will cause some deviations about the reference.
The actural variables can be expressed by the sum of the refer-
ence and their derivations. Thus, the state variables will not
be sinusoidal and the control variables not be a function of time
only. If these deviétions from those unexpected distrubances and
errors are small in comparison with the reference values, the cross
product terms of the deviations may be neglected. The perturbed
equation with exponential weighting function can be derived for

fhe interval 0£{t{Ty as

32 a
(1 - p2) [u2xE(z,t)] = a1axi(z,t) + 22228 xB(2,t) - u?(z,t)

dz2 1
7 (11)
d _a Y?o a a
— x2(z,t) = aga 5 x3(z,t) + (a2 - v)x5(z,t) (12)
ot Y55
AX (z,t)
where a n'"’?
Xn(Z;t) = Ya eryt n=1,2 (13)
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MR = Bmin (34)
and W (z,t) = ——te— (10 ) [y (2, 8)] (15)
Yioe! 9z :

Equation (15) can be inverted by using Green's function, if the
quantity u®(z,t) is determined.

t
Mz, t) = XiQéz—- } G(z,8) u?(€&,t)at (16)
bap, O

It is noted that the exponential weighting function e'Yt is intro-
duced in Equation (13). The state variable XnR of this sysftem is
exponential in time, as shown in Equation (9), so is AXn for the
same percentage of error. The exponential weighting function will
give more uniform distribution of errors at final time as well as
at initial time 1f the percentage of error 1s kept the samé. More
over, the weighting function will enlarge the applicable range of
the perturbed equations. The perturbed equation for the interval
T, {t¢T> are similar to the Equations (11) and (12), obtained by

changing the superscript from a to b, setting the quantity 7y equal

to zero and also letting

AX
b _ n =
xn(z,t) = ;B_;WTl n=1, 2 (17)
no
b 'YT]_
Taus au(z, ) = 20087 "Fa(z,8) uP(g,t)at (18)

bX]_RO
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The Control System--Second Optimization

If the system starts at the right initial conditions with no
disturbances then the control is exactly the same as that of the
reference. Under these condlitions the state variables of the
system are descirbed by Equations (9) and (10). The ¢ontrol vari-
able pn(z,t) differ from the reference Wp DY an amount of M(z,t)
due to the deviation of state variables. From Equations (16) and
(18), the quantity Au(z,t) can be determined 1f u(z,t) is known
for each time interval. The problem now turns to find the solu-
tions of u(z,t) subjected to any arbitrary initial conditions of
x3(z,t) and xs(z,t).

The control system requires the actural variables to follow
the reference variables as close as possible. Thus, under the
ideal conditions those quantities x3(z,t), x2(z,t) and u(z,t) are

identically zero. A cost functional to be minimized 1s chosen as

Tz 1
(6)=f [ (p1(2,0)[xa(2,0) 1492 (2,0)[xa(2:0)1%4pa (2,0)[1(2,0) )} azd
@)

(19)

where py, Pz, and ps are welghting functions. The present time t
is used as lower limit in Equation (19). This is to minimize the
integral from the time to go for the future under any arbitrary
present conditions, according to the principle of Dynamic Program-
ing. If one of the values of xn(z,t) 1s measurable at present

time, the control u(z,t) or An(z,t) can be determined in terms of
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the measured values. This implies that a feedback loop is intro-
duced for this system. The functional e(t) will also be kept at
a minimum for disturbances at any other time. As soon as one of
the output deviation can be detected the source of disturbances
will be nullified by readjusting the control element to produce

Au(z,t), in turn, to subdue the output deviation from the

reference.
Fuler-Lagrange Equations

The method of calculus of variations is employed for minimiz-
ing the cost functional e(t) subjected to constraints given in
Equations (11) and (12). A modified cost functional J including
terms of constraints is constructed for the interval 0&t{T;

Ya

J(t) f f{Pl(Xl) +pz (x8)2+ps (u® )2+k1[(b3—2 1)MRX1+811X1+312Y80X2 u?]

Y].O
+%2[a21—§ X? (y—agg)xg—gsx%]}dzda
Yzo
Tol Yb
2 b_b b 20 b b
+/ f{Pl Xl +P2(X2) +Ps(u )2+%1[(b3—2 )MRX14811X1+812—5 Xz2-u" ]
Ty 0 Y10
b
Y10 b d
+x2[321—B'X1+822X2 a—xz]}dZdU (20)
Yzo0

where A's are Lagrange multipliers. Integrating by parts and ccl-
lecting various termg for similar variables the first variation of

cost functional J 1is obtailned.
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Ty 1 5.8 v2
a.  a, d°\ a-a. a 10
6J=f f{[gple-H.LRb—B—Zé- - LLR7\l+all7\l+a21jd—?\g]6X8i
t o Y30
+[2paxBrara—g A 1-(v-a22)28+352 10x% +[2psu®-2i]ou’}dzdo
Yio
b

Tz 1 b b, 32N 1 Yio

b b b b
+/ [ {[291X1+MRb—3§§ - MRX1+311K1+821 5 h2 6%y
TJ_O YZO

b

Yz0 b
b
+[2p2X2+a]_2—-6— 7\?-{-322?\}23 - %%é]ﬁxg

+[2p3ub—kf]6ub}dzdg
Yio

+ (7. C.) (21)

where

Ta b 3x0 P 1y
) z

Ty a a
(T. ¢.) = ugb [ [ éfi—éliéxa]ido+u§b Y D157,
t dz Jz T, dz

1 Ty T2
- {[kgaxg] + [xSaXB] }dz (22)
0 € Ty

Thus, the following Euler-lLagrange equation is obtained by vanish-

ing the integrand of the double integral for O(ong

a
258 Y
a a A 10
2plX1+LLRba L _ LL;?\%-{-&;_ 17\?—&-&121 3 ?\g = 0
oz Yoo
Ya a
a 20_a a dA2
2fe Xgtarz 4N -(v-az2 )% + S5 = © (23)
Yro

2p3ua - %f =0
Similar equations can be obtained for interval T1{0¢T2 by chang-
ing superscript from a to b and setting v equal to zero.

Transversality and Boundary Conditions

In order that the first variation of functional J vanishes
the transversality conditions by Equation (22) have to be also zero.

This is sufficient if the integrands of each of the integrals 1n
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Equation (22) are zero. For the first integral in Equation (22)

one obtains

a a a a
?\? aXl _ )\TSBXJ_ _ a)\lﬁX? + §.)\_l_6x]8: = 0
Az dz oz dz
z=1 z=0 z=1 z=0 (24)

The fixed boundary conditions in Equation (3) imply no variation

at the boundary points, i.e. 6X§ =6X§| =0
z=1 z=0

Thus, Equation (24) is simplied as

a a
M| %] - o (25)
dz dz
z=1 z=0
The above equation can be satisfied if
a :
7\1(1,0') = ?\?(O:G) = 0 (26)

Similarly, one obtains the following equation from the second

integral of Equation (23)

2(1,4) = KE(O:O) =0 (27)

From the third integral one can write as

b._.b
Aa5x3 285x2| +nDoxB ~A26%x2 | = O (28)
o =T1 g =t o =Tz o=T1

Since the variable XS is known at present time, variation of this
quantity is zero at o=t in the interval t{o(T1. Thus
5xa| =0 (29a)
o=t

Imposing the natural boundary condition at the final point gives
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b

| =0 (29p)

o=Ts

Equation (28) now reduced to

b._b

g ~hN2dX2

\25x5

= 0 (30)

o=T1 o=T1
Now consider the cost functional J in Equation (20) with t=Ty.

Under any known starting conditions the variation becomes

b
2

6xz| = O . (31a)
o=t (T1 ¢ t ¢ U &¢T2 in region b)
t=T1
If the state variable Xz is continuous at T; then
a _Jb
le - 2 l=t (31b)
o=T, =Ty
which implies
a
bz | =0 (t (o Ty in region a) (31c)
o =T1

Using the optimum control the future variable Xg(o) in this prob-
lem wlll be expressed in terms of xg(t) the present variable in
the interval t{o{Ti. For any given value of x3(t) the future vari-
able x5(0=T1) can be determined. Thus one of the boundary conditions
is

a b

2(0)| = x2(o)] (32)

0=T, t=T4
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Equations (26), (27), (29a), and (29b) are the transversality
conditions. By examining the Euler-Lagrange equation and the per-
turbed equations, 1t is found that for unique solution of this sys-
fem one more boundary condition is needed. This condition can be
arbitrarily chosen by imposing a reasonable restriction on the sys-
tem. A reasonable condition 18 that continuous state variables of
the system are required. This is equivalent to (see Appendix A)

d _al )

—Xz2 +ysin 7wz +yx§ = ng (33)
do do

i i

i o=t
o=T1 o=T4 £=T

The second variation of functional J 1is

Ty 1 a
620= | f [pa(s%3)2 + pa(oxB)? + pa(eu)?] dzdo
t 0 T 1 . .
+ 2[ [py(6%0)2 + pa(6x2)2 + pa(du)®]dzdo
Ty ©
If the weighting functions, p's, are positive in the integral (t,Tz2)

(34)

function J will have a minimum provided the condition 5J=0 1s

satisfied.
The Finite Fourier Sine Transform

Tn order to determine the optimum control law, 1t 1s necessary
to solve the equations of auxiliary variables, FEgquation (23), and
the equations of state variables, Equations (11) and (12). These
equations can be transformed to a simple form by using the Finite

Fourier Sine Transform.7 Let us define

K 1 x
= . 1 dz
xjn(o) fOXJ(z,c)31n nmz
%?n(o) = | R?(z,o)sin nTzdz

@)
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and ug(c) = fi uk(z,O) sin nmzdz, k=a,b; j=1,2; and n=1,2,...

Applying the above transformation to Equations (11), (12), and
(23) with the corresponding boundary conditions given in Equation

(3) and transversality conditions from Equations (26) and (27),

one obtains

a_a a_a a

-ATX i, + Aixa - ul =0 (35a)
8
g;iﬁ = (Y-aza)xin - (V-aza)xgn (35p)
QPlX?n - Aixﬁn + (Y-aaz)XEH =0 (35¢)
87‘gn a,a a a
S = TAihi, + (v-a22)N2, - 2paxz (354)
2pau’ - xfn = 0 (35e)
where
A2 = WA(r%bel)-any = 2yal2%5 A2 = WA (nPrPbel)-ans, nel,e, ..
Yio .
Y - asz2 = a2IX§p
Yzq

Since the weighting functions, P,s P2, and ps are constants,
Equation (35) consists of three linear algebraic equation and
two first order linear differential equations with constant
coefficients. Similarly, equations for interval T, (¢ Tz are
obtained by changing superscript from a to b and setting ¢

equal to zero.
The Optimum Control Law

Solving the above equations, one obtains the optimum control
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law in transform form for each time interval. By the inversion

7

of the Finite Fourier Sine Transform the optimum control laws

are found in Appendix B as

a(z,t) =2 Z u_ 2(t) sin n7z 0{t ¢Ty (36)
n=1
ub(z,t) =2 Zlun(t) sin nmz T, § £$ Ta (37)
ns
where
a .a a a a
- A C_G Aﬁs w
a n r'n’n a n n
un(t) = ag‘[—ﬁ;' + P1] Xln(t) - ‘*ﬁ;——'wn (38)
n
b b
A aazc
b b
un(t) = —g‘ "5 b ‘1[;1 + p1l Xln(t) (39)
a Bn—{wncotmn(’l‘g—t)
K oy
xln(t) = [ x1(2,t)sin n7zdz kK = a,b
0
a _ 2
Al'] = mln(bn T +l)—all
) (40)
_ 2
By = By (PRETE41)-21,
a _ a b
Ba = (reee) (80 £22) B - eea(isp- pay (1)
n°n a P
a n"n
b
P1t+a PL+a
c) = p1Birp— T = plBE‘*‘PE L (42)
aaBa abBb
n"n n"n
02
a a b
6, ={wh(v-az2 >+C—g<pl+an>[B;‘;—(mno)]}cosmim-t)
n

a
+{(Y+wﬁa)(Y'azz)+ an
n

(B (1050)- (2)2 1) stnnofl (7, -t)

H = [w (P O+a22)]coshw )+[(w )z - (w+wgﬂ)(y—a22)]sinhwi(Tl—t)



o = pa(n?)z, ay = pa(AD)? (43)
a _ A} b AP
By = X% ’ By = X% (44)
n n
b.b b
0B, (2-B,)-p2 % o B (2-8%)-p2 1
w) =-azs[1 n"n n o? = _ 1_n°n n’/ P2
bl “n = (rem2 =12 (45)

a
pit+ n

b b b b b
wn(p1+an)tanhwn(Tg—Tl)+[Bn(pl+an)-a2202]

b b b b b b
[Bn(P1+an)—azzCn]tanhwn(T2—Tl)+wn(pl+an)]
= 1 for T»o-T, 260 sec. i.e. tanhwg(Tg—Tl) ¥ ] (46)

The block diagram for implementing the optimum control law are

shown in Figure 1. The numerical values from the above equations
have also been computed for the optimum control of reactivity dur-
ing nuclear rocket start-up. However, it is not given here due to

the limited length of the paper.
Optimum Responses of the State Variables

By knowing the optimum control law, the responses of x;(z,t)
and x2(z,t) can be obtained from the perturbed equations in terms

of its Finite Fourier Sine Transforms:7

x?(z,t) =2 ] x?n(t) sin nmz; k=a,b and n=1,2,... (47)
n=1

The following equations are the responses of x;,(t) and xap(t)

for the interval 0<t{ T, obtained from Equations (35) and (38):



a
xan(t) =[f§ (y-az22)f(t) e dt
£
a (y-az2)f[g(t)-1]dt
+ x2p(0)7] e © (48b)
where
a,a
w ¥ a_ a
r(t) = = e(t) . g(t) = —ER% (49)
n
OL?I-!-pl-i-—-——ann
n
Similarly, the response for the interval Tlg t$ Tz are
b b
xin(t) = h(t)xan(t), n=1, 2, .. (50a)
d b
gin =-azz2[h(t)-11x2n ,
a h(t)-1]dt
b 22f [
xgn(t) = xz2n(T1)e T
where
b
h(t) = (51)
O',b _ azzcg
n b Db b
Bn%wncothmn(Tg—t)

The response curves are characterized by the properties of
function h(t), g(t) and f£(t). It can be seen from Equation (50Db)
that 1f az2< 0 (reactor decay constant = N = -ags > 0) and
h(t) <1, the response xgn willl decrease with time, so does the
response of XEn. Thus, the sufficient conditions for the weight-

Page 15

xin(t) = g(t)xBp(t) + £(t), n=1, 2, .. (48a)

—at = (v-a22)[e(t)-11xEn + (y-a22)f(t),

(y-me2) PLa(t)-23as

ing function P and P2 to have the decreasing responses as shown

in Appendix C are

(50p)



Page 16

pa =1, P>y @)  and  o? (2 - B2)> pz D0 (52)

Conclusion

Attempts are made to control the bilinear system in both
the time and space domains. Two consecutive optimization pro-
cedures are applied for achieving this purpose. The bang-bang
control is used for selecting the reference variables and the
optimum feedback control is employed to adjust the system to
approximately follow the reference variables under arbitrary

starting conditions and disturbances.
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Appendix A Condition for continuous derivative of X- at T,

By definition of Equations (13) and (17)

B(2,0) = AXE(z,0) _ %8(2,0)-Y30eY9sin 2 _x8(z,0) _ sin 7z (A1)
YEOeVO' Ygoe(yc Ygo erYO-

o b
x2(z,0) = Agz(z,d) _ %3(2,0)-¥20e" 2 sin m2_ x2(2.0)

- sin 7wz (A2)

Y20 VT2 YzoeryTl YgoeW1
thus
d _a d.b d -X3(z,0 ) Xb(z o '
2 - 2B - 9pXelzo), - 2 Xe(z.0)y
d0 d0 o=t o Ygo o0 SE'Ygoele o=t
G=T1 t=T1 O=Tl ,t=T1
o ,a d ,b
5g2(2:9) %8 (z,0) 5z (2:0)
) Y3 erygl 'YYa e¥o i Yb oYT1 jo=t (A3)
20 o=T 20 [o=T 20 t=T,
For continuous slope of X=(z,0) at ¢ = T,, we have
Bxg(z,GQ _ BXB(Z,O} (Ak)
o O=T1 ° o=
=l
Substituting into Equation (A3) gives
Jd_a o .b a
XZ(Z’O)l - ~x2(z,0) = —yxg(z,c), - vysinmz (A5)
g0 o=T1 3 o=t o=T1
d .a a t=Ts
or sgxg(z,oﬂ +yx2(z,o)| + ysin mz = B—Xg z,0) ! (A6)
o=T1 0=T; i
T
The Finite Fourier Sine Transform of the above equation is
a 1
2x8n(o) + 78n(o) | +n = 2xBn(o | (A7)

j o=T1 lo=T; '

l

where %3

Yy = n = 1. Yn =0, n # 1
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Appendix B Solution of optimum control law

Equation (35) is used here for solving the optimum control
law for the interval (J§t:<Tl. Eliminating %?n from Equations

(35e) and (35c), one obtains

a

A a

ui(c) = =L [ (y-azz2)hz2n + 2p1%3n] (B1)

20

n
where
a _ a2
Oy = ps(An)

Substituting Equation (Bl) into Equation (35a) gives

a 1 a ay.a
Xz2n = ——5—5{(7‘322)x2n + Q(Pl*an)xln] (B2)
2a°B
n n
The following equation can be obtained by substituting the above

equation into Equation (35b):

ana
[é%—+ (v-az2)(1- anﬁg)]xfn + —3;————-[ + (y-az2)128p = 0 (B3)

Pt 2(p1+al)
where
gd - ﬁi
o=
An

Eliminating A%, and x&, from Equations (35c¢), (35d) and (B2),

we have

2C2x3n + (55 - By)hen = 0O (B4)

where

a a pa a a P 4ad
B, = (7“322)(1—5n- ——E-), Ch = P1B, + p2 iggg

nn

Solutions for Aa, and xgy, from Equations (B3) and (B4) are

A = By (t)coshad(o-t) + Ez(t)sinhw](o-t) (B5)
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Xin = - —la{ﬁl(t)[wisinhwi(c—t) - Bicoshwi(o—t)]
2Cn
a a a_. a
+ Eg(t)[wncoshwn(o—t) - Bn81nhwn(o—t)]} (B6)
where
] | a?ei(2-8%) - pe
wn = (’Y-azz) 1 - a (B7)
Pr + O
£ = a quantity carried as parameter
From Equation (B2) one obtains
xan = __%_E{El(t)[Micoshwi(o—t) - Nisinhwi(c—t)]
“nPn
a_. a a a
+ B2 (t)[Mosinhwd (o-t) - Nicoshwd(o-t)]) (B8)
where 3 2
a n a a n a
M, = (v-az2) + —E(Pl+an): N, = —g(Pl+an)
Cn n

The similar solution for the interval Tl$.oé;T2 can be
obtained by changing superscripts from a to b and arbitrary

constants from E to F.

%En = Fl(t)coshwg(o-t) + Fg(t)sinhwg(c—t) (B9)
p XEn = - E%B{Fl(t)[wgsinhwﬁ(o—t) - Bgcoshwg(o—t)]
n
+ Fa(t)[wlcoshw (o-t) - Bgsinhwg(c—t)]} (B10)
xgn = 5—%EB-{Fl(t)[MgcoshwE(o—t) - Ngsinhwg(o—t)]
ann
+ Fg(t)[Mgsinhwg(c—t) - Ngcoshwg(o—t)]} (B11)

The optimum control law for the interval 0 $t <T, is obtained

by setting ¢ = t in Equation (Bl) and (B5)
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a
ui(t) = —ég[(v‘aza)El(t) + Eplen(t)]
2
n

The arbltrary constant E;(t) is to be determined for obtaining
the optimum control law. Substituting Equation (Bl1l) into

Equation (A7) leads to

a a w b b
Sx2n| o+ ydn| 4y, = —EBF (TN + Fa(Ty M)
O=Tl O'::Tl gaan

By using Equations (B9)and (29b) and setting t = T; we have

Fy(T1) = - FZ(Tl)tanhwg(TZ"Tl)
Substituting Equation (Bll) into Equation (32a) and letting
t = T, gives
xbr| = —p[MOFL(Ty) - NDF2(Ty)]
o=T1  20,By,
Eliminating F1(Ty) and Fzo(T,y) from Equations (B13), (Bl4) and

(B15) one obtains

a D yx2
g%xzn, + (W*wnO)XEBi t Y, =0
l 0’=T1 O=Tl
where thanhwb(Tz—Tl) + Mb
0=-2 - B
= 5 D

RS
Mntanhwn(Tg—Tl) + N

The following equation ig obtalned by substituting Equation

(B8) into Equation (B16)

a
By (€)L, + E2(t)G, + 20085y, = O
where
a
a a b a
Gn = [wi(7'822)+ Eg(Pl+an)(BD‘V-wﬂQ)]COShwn(Tl't)
n

a
+ {(V+®g(ﬂ(V‘azz)+ BL%%H[Bi(y+ng)—(wi)2]}Sinhwi(Tl—t)

n

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)
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w
a n a a b . a
L, = [o,(y-az2)+ E§(p1+an)(Bn—v—wnO)]Slnhwn(Tl—t)

n

a
+{(y020) (v-az2 )+ “—Cﬁr—l[Bi(mEoni>21}cosmi<wl-t>

Since the quantity xip(t) is measurable, from Equation (B6) one

obtains

xEn(t) = %{BﬁEl(t) - oPB2(t)] (B18)
n

Solving E;(t) from Equations (B17) and (B18) and substituting

into Equation (Bl2), we have the optimum control law

a .a a,a a
C G A B w
a n. n'n a n"n n
() = I+ paladn(e) - R (B19)
a n n
n
where
a; b a
H, = [wn(wnmagz)]cosmn(Tl—t)

+ [ (“’?1)2‘ (fy+(1)§0) (v-az22)] Sinha)i(’l‘l—t)

The optimum control law for the interval T;{ t{ T2 can be

obtained by the similar procedures.
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Appendix C Sufficient condition for decreasing responses

The weighting functions pi, pz and ps in Equation (19) is
relative. One can assume that ps is unity without loging any
generality. Thus

ps =150 (c1)

The quantities A, C_, a_ and B_ in Equations (40), (42), (43)

n
and (44), respectively, are positive for a nuclear reactor. Also
the quantity 62 given by Equation (44) is between zero and unity.
Thus the function of h(t) in Equation (51) will be less than
unity if
b b b
B + w cothw (Tao-t) >0 (c2)

Because the value of cothwE(Tz—t) is larger than unity and wE) 0

we can wrlte

b b b b b
B + w/cothw (Tz-t) Py B, + (¢3)

Substituting the wvalue of BE and mg into the above equation gives

b,b )
BPialcothnd (To-t) 3B+l ¥ -ano[2-pD- p2p - G0Bn(2Bplopay oy
aB, 2(P1+on)

Therefore, Equation (C2) can be satisfied if

aPs2(2 - 82) > P2 Y0 (c5)
and POV @g (c6)

This conditiong are sufficient for the weighting functions Pa,
and P- to have ensure the decreasing response in the interval
T1\< t\< Tg.

The sufficient condition for the interval 0 t{ Ti can be
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obtained as follows. By using the definition of Ci, Hn and Gn

in Equation (49) one obtains

() wi(w30+a22)coshwi(Tl—t)+[(wi)g—(yﬁpgﬂ)(v—azz)]sinhwi(Tl—t)
glt)= -

a
[ (v-az2)+(0204az2 ) 280 Jcoshal (T1 -t )+ (140l0) (v-az2 ) sinhe? (T1-t)
n

(c7)
With the conditions in Equations (46) and (C6) we have the follow-

ing approximations

b
ap (2 -B ) - P2
a, b n n n n
w_ (w Oaszs) = ass(y-ass)
e 2(ps + ab) e (0%)
a b a B (2‘5 )—pz
(wn)g - (W*wno)(Y—azz) ~ - (v-222)[(y-2z2) L 2
- . Pr + o
a B (2-6)-P2 (¢9)
+ azz b ]
2(p1+an)
o)
(v + wno)('Y - agso) Y (Y - az2)® . v (ClO)
: b,b b
b _ a a B (2—5 )—pz
('Y‘azz) + (ﬂ)no'i'azz) 1-on ¥ (’Y"azz) + agzz2 oo nb , (Cll)
B, 2(pr+a )
For the nuclear reactor we know that aE) ai, 522 i, 0<A<1 and 0O<y<l.

It we let a2p2(2-g2)5 p-2 0, it is concluded that

a, b b b 1-02
wn(wn +ax5)<0, ('Y‘ano)('}’—azz»o; ('Y'aze)'i-(d)no-i'azz)—gn >0 and
B

n

a
n

a
- b
|(7‘322)+(wgo+822)1 wn|> l(W*wnO)(V-azz)'>
5
2 (wraza)| > J(0f)2- (vor0) (v-az2)
lwn n o282 ®n v+, Q) (v-222) |
From the above equations we conclude that Equation (C7) is positive
and less than unity, i.e.

0 ¢g(t) K1



Kt l.lhl
M.aw. &E\ A_u: = 2sinmz

—- sinmz

llll"ll"ll'lll'lll"""l

Yioe? xME
X,z ) g Xzt | sinnmz | .w._‘& lx%\m -l 2sinmz

a b b a.a.a
A -a,,C AR oY
xw?».“ﬁ&llof P K50)= B =+ Py, ¥ =L
dn Hn " dD BR+aR cothul(T-1) b 2H

Switches s will switch at .u._._

Fig | Block Diagram For Control Variable u




